
Prolog vs. Lisp

Carl Ponder

Computer Science Division
University of California

Berkeley, CA 94 720

August 17, 1989

Abstract

Prolog and Lisp benchmark timings are compared on the VAX 8600. The measured Lisp-to
Prolog time ratio varies between 0.143 and 2.83. These differences between Prolog and Lisp perfor
mance can be explained by studying the structure of the benchmarks and the language implemen
tations. Previous authors have used such measurements as evidence that one language is "better"
than the other; their works are summarized. The issues involved in comparing two languages are
treated, as well as the assumptions involved in interpreting language performance data.

Acknowledgment

This work was supported in part by the Army Research Office, grant DAAG29-85-K-0070,
through the Center for Pure and Applied Mathematics, University of California at Berkeley, and
the Defense Advanced Research Projects Agency (DoD) ARPA order #4871, monitored by Space
& Naval Warfare Systems Command under contract N00039-84-C-0089, through the Electronics
Research Laboratory, University of California at Berkeley.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
17 AUG 1989 2. REPORT TYPE

3. DATES COVERED
 00-00-1989 to 00-00-1989

4. TITLE AND SUBTITLE
Prolog vs. Lisp

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Prolog and Lisp benchmark timings are compared on the VAX 8600. The measured Lisp-to-Prolog time
ratio varies between 0.143 and 2.83. These differences between Prolog and Lisp performance can be
explained by studying the structure of the benchmarks and the language implementations. Previous
authors have used such measurements as evidence that one language is "better" than the other; their
works are summarized. The issues involved in comparing two languages are treated, as well as the
assumptions involved in interpreting language performance data.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

42

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1 Introduction

... a very well-known professor of Computing Science made the statement that "Algol 60
was a very inefficient language", while what he really meant was that, with the equipment
available to him, he and his people had not been able to implement Algol 60 efficiently.
(That is what he meant, he did not mean to say it!)

- Edsger W. Dijkstra, 1974

The first Prolog compiler was presented by Warren [15). He argued that his Prolog compiler
produced reasonably efficient code by comparing timings of benchmarks written in Prolog, Lisp.
and Pop-2. He went further to explain why some benchmarks ran faster in Prolog and others ran
faster in Lisp (14)[15). Warren's Prolog compiler used an intermediate form to represent program
information between the syntax-analyzer and code-generator. This intermediate form evolved into
what is known as the Warren Abstract Machine (WAM) (16).

The WA~I is a very high-level instruction set; early Prolog implementations compiled Prolog
into "WA~f and executed the WA:\f instructions on a software simulator, or macroexpanded the
\VA~I instructions into native code. More recent implementations use microcode to execute WA.\I
instructions [2), or use more sophisticated code-generators to produce better native code. These
newer implementations appear to provide a significant jump in performance. It is reasonable to
wonder how advances in Prolog implementation technology compare to similar advances for Lisp,
which likewise include compiler optimizations and microcode or other forms of architectural support.

The intent of this paper is to provide a framework for comparing Lisp and Prolog implementations
both now and in the future, as technologies continue to advance. Specifically it will

• Discuss the issues involved in comparing the performance of two languages.

• Summarize previous efforts.

• Present a number of benchmark results, and explain differences in performance.

• Discuss the interpretation of the results and the assumptions involved.

2 Comparing Languages X & Y

Comparing two languages is difficult. There are a number of ambiguities to resolve, in terms of

1. What is being compared: Programmability? The dollar cost of the compiler? Execution
speed? Memory requirements?

2. What comparison to make: Benchmark tests? Formal analysis? Many important aspects of
programming languages are difficult to quantify.

3. How to interpret the results: Are the results absolute, valid across all programs? Do they
indicate trends? To what extent?

On the most abstract level, a programming language can be characterized as a mapping of
programs to the functions that they compute. We can look at a few questions from this perspective:

1. Program size: for a given function F, which language maps the shortest program to F"'

2. Program semantics: languages X and Y map program P to functions F x and Fy. respectively.
How do Fx and Fy compare? For example, one might be an extension of the other.

3. Language semantics: in an enumeration of programs, how are the computable functions ordered
under each language?

The answers to these questions might tell us whether one language is inherently more compact or
more efficient than another. Unfortunately proofs on such an abstract level tend only to work only
for examples too simple or too technical to be of any interest.

~lore concrete questions of immediate interest are as follows:

1. How easy is the language to program in? This could refer to programming in general, construc
tion of a particular program, or programming for a given class of applications. It is difficult
to measure how easy a language is to learn and use. Ease of programming is strongly affected
by outside factors, such as the available documentation and the programming environment.

2. How easy is the language to implement? The implementation includes aspects of the hardware,
compiler, and runtime system. Some languages make certain optimizations more obvious. An
implementation may be easy because it performs poorly or provides little debugging informa
tion. A more abstract language may be harder to implement.

3. How efficiently does the language execute? Efficiency is dependent upon the implementation.
A highly optimizing compiler may speed up execution time at the expense of debug time,
making the system harder to program. One may wonder how efficiently a language can be
implemented given the hardware resources at hand; available theoretical approaches appear to
provide no answer, although lowerbound techniques might be applied in specific cases [10].

Execution efficiency is the focus of this report. The approach taken is to compare execution
times of benchmark programs, on reasonably fast implementations of Lisp and Prolog. There are a
number of interrelated considerations affecting the performance of a given benchmark:

1. Use of an Interpreter. Programs tend to run 5-10 times more slowly interpreted than compiled.
Interpreters are generally designed to provide a high degree of functionality without taking a
long time to build; program execution time usually suffers.

2. Efficiency of the runtime model. An interdependency exists between the representation of the
program state at runtime, the design of the compiler code-generator, and the functionality of
the hardware. All three of these factors affect performance. Design of the runtime system can
make up for apparent inadequacies in the hardware functionality (the Smalltalk SOAR design,
for example [13]).

3. Compiler optimization.s. Optimizations have been applied to "standard" languages like Fortran
for quite some time. For newer languages like Prolog these have yet to be explored. Two "good"
compilers for the same language and machine can produce object code differing by 10-25% in
performance.

4. Architecture. Both the speed and the functionality of the architecture has a strong impact on
performance. The raw speed of the Cray computer, for example, makes it one of the fastest
Lisp machines.

5. "Language Power". Some languages might not be able to express algorithms as efficiently as
others, beyond the capability of any compiler to correct. :'ol'othing concrete is known about
this, though some hypotheses have been made. In particular, it is hypothesized that the lack
of destructive operations in Prolog and Pure Lisp is a liability [10].

The difference in execution time for two benchmarks reflects a combination of these factors. The
degree to which each consideration affects a given benchmark can be determined by analyzing the
benchmark and its steps of execution. It is difficult. however, to extrapolate the ·'general" case from
spectfic benchmarks; such results are always questionable.

Considerations 2 & 3 are obviously driven by language semantics. but are still conditioned by the
way we think about hardware organization. The real relationship between language semantics and

2

hardware is poorly understood. It is often the case that one system will run faster for some programs
and more slowly for others, which makes it difficult to decide which individual design decisions are

superior.

3 A Summary of Previous Efforts

By now we have seen a number of ambiguities regarding the comparison of two languages. These
ambiguities can potentially cause sloppy analysis of results and erroneous conclusions. Some previous
language comparison efforts are described here.

3.1 Lisp/Prolog Performance Comparisons

Gutierrez compared the (DEC-10) performance of a theorem-prover written in both Lisp and Prolog,
finding the Lisp version to run about 3 times faster than the Prolog version [4]. He stated that the
experiment had been undertaken to "provide a basis for choosing a language for a large research
project." A general factor of 3 in performance would probably be a good reason to favor one language
over another, were there no other factors involved - after all, why not use assembly language?
Regardless, O'Keefe rebutted this [8], rewriting the theorem-prover to be faster in both Lisp and
Prolog; the new Prolog version generally outran the new Lisp version by 30-50%. In both Gutierrez'
and O'Keefe's discussions there were underlying issues which were not treated:

1. Why were the programs structured as they were? To be most efficient? Most natural? The
theorem-prover written by Gutierrez looks reasonable at first glance; O'Keefe showed that it
handicapped the Prolog implementation several ways. This argument is difficult to resolve:
how can you claim to have made the "ultimate rewrite" of a program?

2. What efficiency ·issues are purely implementation-dependent? For example, O'Keefe stated
that Prolog is faster for manipulating records and Lisp is faster for manipulating lists. This
is purely an artif-act of the implementations; the runtime representations of the data struc
tures can be adjusted if they penalize performance significantly. Another example is the
"lazy cons" tail-recursion optimization that Lisp compilers ignore but Prolog compilers do
not; this optimization is regarded as an important efficiency enhancement in Prolog, whereas
Lisp implementors don't consider it worth the effort. The Prolog syntax encourages a style of
programming which the compiler can readily optimize; the Lisp syntax does not.

3. What efficiency issues are purely language-dependent? The "inherent efficiencies" of the lan
guages are ostensibly the issue in these papers, but it is not clear that anything other than
programming style and implementation tradeoffs are being compared. The fundamental dif
ference in language semantics suggest that some inherent difference in performance must exist
[11], but as yet yields no insight for real cases.

These issues will considered in our later discussion.
Tick [12] made a more analytic comparison using the Gabriel benchmarks [3] Tak, Boyer. Denv,

and Puzzle. He took counts of procedure-calls, memory references, and instructions executed, and
compared raw performance on a Sun-3. In particular, the timing ratios of Lisp-to-Prolog were 0.1.
0.59, 0.67, and 3.47, respectively. (The measurements for Puzzle presented later show Lisp to take
about 50% of the time of Prolog. The remaining results are relatively consistent). ~lajor details
of the compilers and architectures which would tend to bias the results were made explicit. The
Lisp was native-code compiled from a portable intermediate form, and the Prolog was compiled to
an intermediate form which was interpreted. Neither of these implementations sounds efficient: any
differences in performance could have been due to poor expressiveness of the the Lisp intermediate
form, or the interpretation overhead of the Prolog intermediate form.

3

Tick's conclusion was that Prolog has a greater "semantic content" than Lisp; also that Lisp is
better mapped onto current machines than Prolog. This "semantic content" is based on the the
ratio of instruction to data transfer rates during execution; as such the "semantic content" is purely
an artifact of the Prolog and Lisp runtime models. The superior mapping of Lisp onto the hardware
may be true for those implementations; very likely we will find better ways to implement Prolog in
the future.

3.2 Benchmark Suites

Gabriel presented a "standard" suite of Lisp benchmarks and compared the results for a large number
of implementations [3]. This caused a stir in the Lisp community not only because it gave customers
a comparison upon which to choose, but because it forced implementors to realize the effects of their
design decisions. A suite of Prolog benchmarks was developed by Wilk [17]. Okuno [9] presented the
results for a combination of Lisp and Prolog benchmarks; only a few of the benchmarks were written
in both Lisp and Prolog. Additional benchmarks for Prolog continue to appear; a particularly
"meaty" collection was presented recently [6].

Most of the early Prolog and Lisp/Prolog benchmarks fall into the category of diagnostic or
microscopic benchmarks, as they measure specific param~ters such as the speed of procedure-call or
list operations. Diagnostic benchmarks are perhaps more useful for tuning an implementation, as
they identify p6tential performance bottlenecks. The performance results for diagnostic benchmarks
tend to be easier to interpret, since the benchmarks are short or spend most of their execution time
within small sections of code. The alternative is application or macroscopzc benchmarks, such as the
theorem-provers of Gutierrez and O'Keefe. Most of the Gabriel suite falls into this category; a few
of these have been converted to Prolog, the results of which will be presented later.

3.3 Other Work

McDermott [7] discussed the pros and cons of the Prolog language from the perspective of the
contemporary AI community, focusing on functionality aspects.

An interesting experiment was reported in [5], where programmers were timed while they coded
a set of AI-related problems into Ada, Lisp, and Prolog. Their performance for Lisp and Prolog were
roughly comparable up to the debugging stage, where the Prolog programmers were bogged down.
The Ada programmers performed worst or near-worst all around. The results of such experiments
are all too fallible, but are interesting to consider.

4 The Benchmarks & Measurements

In this section we measure the performance of Quintus Prolog 2.0 and Franz Lisp Opus 43.1 running
on a VAX 8600 ("Vangogh" at UC Berkeley). Seven benchmarks are used, named Nreverse, Tak.
Boyer, Browse, Frpoly, Prover, and Puzzle. The numbers are summarized below in table 1. Each
benchmark was run 5 times, and the variation in timings was less than 10%. The entries for garbage
collection time were omitted when the value was zero (the Prolog system supports garbage-collection,
but didn't perform any for these cases). "CPU" is the total execution time minus "GC", which is the
time spent in garbage-collection. Franz Lisp "localf" declarations were used for fast function-call.
Vectors were used in the Puzzle benchmark. "Fixnum" operators were used in most cases, which
assume the results of integer operations stay within a fixed range.

4

Table 1 -Benchmark Timings for Lisp and Prolog (in seconds)

Prolog Lisp
Benchmark Case CPU CPU GC
~reverse 0.0134 0.015
Tak 2.45 0.35
Boyert 14.75 25.28
Browset 18.84 53.33
Frpoly 1 0.10 0.067

2 1.24 1.48
3 5.73 9.22

Prover 1 0.034 0.033
2 0.13 0.083
3 0.10 0.05
4 0.083 0.033
5 0.10 0.083
6 0.18 0.13
7 0.20 0.13
8 0.35 0.35 0.25
9 0.40 0.32

10 0.70 0.63
Puzzle 10.34 5.04
tl2.18 seconds CPU/14.29 seconds GC for 8600 Common Lisp [3].
t38.69 seconds CPU for 8600 Common Lisp [3].

The benchmarks are listed in Prolog in the appendix; the Lisp versions are in Gabriel [3], with
the exception of Prover and Nreverse whose Lisp translations are also included in the appendix. We
will examine the benchmarks one by one and try to explain the timing difference.

Nreverse

The Nreverse benchmark is a test of the so-called lazy cons tail-recursion optimization of Prolog.
The clause

concatenate([XIL1] ,L2,[XIL3]) :- concatenate(L1,L2,L3).

when used with instantiated first and second arguments, will allocate a list cell for the third argu
ment; the recursive call (destructively) "fills in" L3 .. This tail-recursive clause is compiled into an
iterative loop by all WAM-based Prolog compilers.

The Lisp form of that same line is

(cons (car L1) (concatenate (cdr L1) L2))

which defers setting up the list cell until after the recursive call to concatenate. Rearranging this
form to be tail-recursive gives

(setq L (cons (car L1) nil))
(dconcatenate L (cdr L1) L2)

5

where dconcatenate destructively attaches the result onto L. Tail-recursion optimization is now ap
plicable. To do this automatically on the first form would require analysis techniques which are
beyond any existing Lisp compiler. Programming in the style of the second form is awkward. so
Lisp does appear to be at a disadvantage here.

The Prolog version of Nreverse runs about 10% faster than the Lisp version, which I (following
the lead of Warren (14]) would attribute to the removal of tail-recursive procedure-call overhead.

Tak

The Tak benchmark, on the other hand, favors the Lisp system over the Prolog system. This is
a quadruply-recursive program which performs integer arithmetic. WAM-based Prolog implemen
tations are at a disadvantage here; the flow of control is strictly deterministic by the semantics of
the arithmetic operations, but work is nonetheless performed to set up choice-points and maintain
backtracking information. Data flow analysis would be sufficient to correct this, but it is not clear
that Prolog programs would generally benefit from this optimization.

Boyer

Profiling the Prolog version of the Boyer benchmark shows that roughly 90% of the executed WA~1
instructions were in the routines

revrite(Atom,Atom) :
atomic:(Atom),!.

revrite(Old,lev) :
!unc:tor(Old,F,I),
tunc:tor(Mid,F,I),
revrite_args(I,Old,Mid),
(equal(Mid,lext),

revrite(lext,lev)
lev= Mid

) ' ! .

revrite_args(O,_,_) :- !.
revrite_args(I,Old,Mid) :

arg(I,Old,Oldlrg),
arg(I,Mid,MidArg),
revrite(OldArg,MidArg),
11 is 1-1,
revrite_args(l1,0ld,Mid).

The results will be very sensitive to how this portion executes. The Lisp version was not profiled,
but the corresponding routines are considerably more complicated:

(detun revrite (term)
(cond ((atom term) term)

(t (revrite-vith-lemmas (cons (car term)
(revrite-args (cdr term)))

(get (car term) (quote lemmas))))))

6

(detun revrite-args (1st)
(cond ((null 1st) nil)

(t (cons (rewrite (car 1st))
(rewrite-args (cdr 1st))))))

(detun rewrite-with-lemmas (term 1st)
(cond ((null 1st) term)

((one-way-unity term (cadr (car 1st)))
(rewrite (apply-subst unity-subst (caddr (car lst)))))

(t (rewrite-with-lemmas term (cdr lst)))))

(detun apply-subst (alist term)
(cond ((atom term)

(cond ((setq temp-temp (assq term alist))
(cdr temp-temp))

(t term)))
(t (cons c~ar term) (apply-subst-lst alist (cdr term))))))

(detun apply-subst-lst (alist lst)
(cond ((null lst) nil)

(t (cons (apply-subst alist (car lst))
(apply-subst-lst alist (cdr lst))))))

(detun one-way-unity (terml term2)
(progn (setq unity-subst nil)

(one-vay-unityl terml term2)))

(detun one-way-unityl (terml term2)
(cond ((atom term2)

(cond ((setq temp-temp (assq term2 unity-subst))
(equal terml (cdr temp-temp)))

(t (setq unity-subst (cons (cons term2 terml)
unity-subst))

t)))

((atom terml) nil)
((eq (car term1) (car term2))
(one-way-unity1-lst (cdr term1) (cdr term2)))

(t nil)))

(detun one-way-unity1-lst (lst1 lst2)
(cond ((null lst1) t)

((one-way-unity! (car lstl) (car lst2))
(one-way-unity1-lst (cdr lstl) (cdr lst2)))

(t nil)))

As ~1cDermott pointed out [i], Prolog's real strength lies in the ability to describe pattern-matching

processes in a concise way. The Lisp version of the benchmark has to define its own pattern
matcher which explicitly decomposes argument data-structures and matches basic patterns. This

is done implicitly by the unification routines in the Prolog runtime system. The Lisp version pays

i

the overhead of the procedure-calls in the unification process, making it considerably slower. The
Prolog version permits optimization of the tail-recursive call in rewrite-args. The Prolog version also
represents data differently, using functors in some places rather than lists. Nonetheless, the 8600
Common Lisp results reported in (3] are more competitive with the Prolog measurements presented
here.

Browse

The main routine match of the Browse benchmark consumes > 90% of the execution time. In the
Lisp version it is 52 lines long; in the Prolog version it is 10 lines long. There are a number of places
where operations are repeated, such as (car pat), or dereferences are repeated in taking the car
and cdr of the same variable. Such repeated work can be eliminated by the compiler if it confirms
that there are no side-effects tampering with the intermediate pointers, so these pointers can be
saved rather than recomputed. As with the "lazy-cons", such an optimization may not be generally
useful.

The program can be rewritten to use temporary variables to hold intermediate values. The
compiler must then be smart enough store these variables in registers rather than in memory, where
the dereferencing would have to occur anyway. Registers are generally not used in the Franz Lisp
implementation. ·

Frpoly

The Frpo/y benchmark was designed to mimic computations in the Macsyma system. As a Lisp
benchmark it would give an indication of Macsyma performance on a particular Lisp system. Frpo/y
symbolically expands the expression (z + y+ z + 1)n for n = 5, 10, 15, where intermediate expressions
maintain a canonical form at certain steps of the computation.

The Lisp version uses some messy data-structure manipulations, drawn from the Macsyma
polynomial-manipulation package. Destructive operations are used, presumably to save time and
reduce the number of scratch list-cells used. These destructive operations did not translate to Pro
Jog, so a simpler but "less efficient" scheme is used. The Lisp version uses a routine to explicitly
put expressions into canonical form, as is done in Macsyma, while the Prolog version maintains the
canonical form all along. Since the algorithmic structure is not the same for both cases we cannot
really judge the languages by this benchmark.

Prover

The Prover benchmark from O'Keefe does not appear to favor or penalize either language. The
program structures are virtually identical, and neither relies on any "unpopular" language features
which may not be well-implemented. In O'Keefe's original paper the Prolog implementation tended
to be a bit faster; in these tests the Lisp implementation tends to be faster.

Puzzle

The Puzzle benchmark finds ways of packing pieces in a 5x5x5 cube by trying all pqssible combi
nations. The Lisp version uses an array to represent the arrangements. Failed combinations are
undone and retried with different choices.

The Prolog coding uses backtracking to undo failed combinations: in order to keep track of
the number of combinations attempted, a global variable is maintained using the set/access or
assert/retract operations. In the Quintus implementation a full assert/retract is used, which involves
a substantial runtime overhead. The Prolog coding has a further disadvantage of using lists instead
of arrays, which imply more sequential accesses to data.

8

4.1 A Note on the Code

Looking at the output of the Lisp compiler shows that there is room for further Improvement. The
following sequence is from apply-subst in the inner-loop part of the Boyer benchmark:

L18:
subl2 SS,r6
IIOVl rO,rO
IIOVl 28(r8) ,r1
IIOVl 4(r1),r1
IIOVl rO,O(r1)
jeql L1S
IIOVl 28(r8) ,r1
liiOVl •4(r1),r0
IIOVl rO,rO
liiOVl O(rO),rO
jbr L14

The movl rO,rO operations are redundant, as well as the second movl 28(r8},rl operation: overall
there is a lot of stacking and unstacking of variables, as registers are not used to transmit parameters
in procedure-calls. Unfortunately the Prolog compiler does not produce symbolic output for us to
examine. Very likely both compilers could use additional optimizations

5 Interpretations

Ideally this paper would compare the usefulness, or at least the relative performance of Prolog
and Lisp, as might be expressed by the diagram on the left. As outlined in section 2, there are a
number of complicating issues which cannot be readily resolved. We are instead forced to make a
more pragmatic treatment- evaluating a measure that is easy to quantify (VA .. '(performance) on a
domain of programs we can deal with (benchmark programs). This pragmatic comparison is better
expressed by the diagram on the right:

Problem
Domain

"N~I" -atura "Natural"
Lisp Prolog

Prn~••m•

Tim1ng
Companson

Existing Contrived
Programs Problems

~
Algihm•

LiSO

Cod1ngs> l Timmgs
Pro log

Rewntes

The concepts on the right only crudely approximate the concepts on the left. Rather than an AI
problem domain, we have algorithms scavenged from existing programs with a few contrived ones
thrown in. Rather than natural Lisp and Prolog codings we have direct Lisp and Prolog rewrites of
these algorithms. For those we have specific timings.

The natural program style have may have a significant bearing on the inherent usefulness of a
language. Language X might efficiently express function F, but be unrepresentative because real
programmers are unable to utilize X so effectively. The naturalness of a piece of code depends on
the experience of the programmer writing (or critiquing) it, the aesthetic notions of programming
style, etc. and is difficult to measure. The benchmarks in this study are small enough that there
is little freedom of choice in rewriting them. Thus any distinctions in "natural" programming style
between Lisp and Prolog would not be very pronounced in these testa.

Do these results have any bearing on the ideal comparison? We have already expoeed issues
involved in interpreting these results. If we read the results of our pragmatic comparison ver batzm
it appears that the Prolog and Lisp implementations are roughly competitive, with Lisp slightly
favored. In the extreme cases, Prolog was ix slower than Lisp (Teak), and Lisp was 2.8x slower than
Prolog (Brow$e). Among the larger benchmarks, Prolog was only 2.5x slower than Lisp (Prover,
case #4). Even among the results for Prover there was a substantial variation, with Lisp being equal
to Prolog in case #8 and 1.7x slower if we include GC time.

Studies like this typically assume that the performance ratio will stay the same as implemen
tations improve. Otherwise measurements made on interpreters would be uninteresting - if the
interpreter for language X loses against the interpreter for language Y, we might conclude that Y
was inherently faster than X. But we can rest assured that if we compile language X, it will run
faster than the interpreter for language Y. So until we compile language Y as well, X will appear
faster. What happens when we compile language Y? The comparison usually changes as the imple
mentations improve. Extrapolating the performance ratio from one generation of implementations
to another will not work, any more than does extrapolating the performance of one benchmark to a
suite of benchmarks. A prime example is in comparing Gutierrez's [4] results to O'Keffe's [8], and
O'Keefe's results to the ones here -clearly the performance ratio was not preserved!

Further improvement is likely to continue. Examination of the Franz Lisp object files shows
room for further optimizations. There are a number of obvious, unexploited high-level optimization
techniques available for both Lisp and Prolog. Already there are faster Prolog systems in the works.

As implementations get faster, more and more deficiencies in the system design will have to
have been "ironed out" (i.e. poor garbage-collection mechanisms, inefficient register usage by the
compiler, etc.). If there is such a thing as "inherent efficiency" of a programming language, we
should approach this limit as the efficiency of existing implementations improves.

However, we need to distinguish between improvements which reftect a speedup for all or "most"
programs, and those which only apply to a given benchmark or small set of benchmarks. Comparing
results for the Tak benchmark, for example, it appears that Prolog could greatly benefit from
compiletime determinacy analysis. But this is not so clear from the other benchmarks; Tak is
unusually sensitive to determinacy optimization.

In fact we could make optimizations even more benchmark-specific by building a system with
lookup-tables, which identify a given benchmark and print its results without actually executing it.
The ''fastest" system for executing a given benchmark would have to use precisely this approach!
As we consider "increasingly efficient" systems we must keep this point in mind. whether our "in
creasingly efficient" implementations are evolving toward the "generally most efficient" system or
merely one with a large lookup table. The successive Improvements in the implementations should
be made with generality in mind.

In my opinion, for sufficiently well-implemented Lisps and Prologs there will always be programs
running faster in one than the other if translated in a "natural" way. This discrepancy can be
patched one way or the other by rewriting the benchmark, modifying the system, or both, but the
benchmark programs end up having a contrived look or the system will become optimized for highly

10

unlikely cases.

Acknowledgments

Prof. Alvin Despain prodded me to do this study, after I had done some initial measurements on
Nreverse and Tal:. Bill Bush, Peter Van Roy, Bruce Holmer, and Herve Touati made suggestions
along the way. Herve Touati modified the Browse benchmark (originally converted by Tep Dobry).
and profiled the executions of a number of the benchmarks. Rick McGeer converted the Frpoly
benchmark. The Boyer, Puzzle, and Tal: benchmarks are from Evan Tick, the Prover benchmark
is from R.A. O'Keefe [8], and the Nreverse benchmark is from Warren's original thesis [15]. Franz
Lisp versions of Browse and Puzzle were supplied by Charlie Cox.

11

References

[1] Dijkstra, E.W. Selected Writings on Computing: A Personal Perspective. Springer-Verlag, ~ew
York, N.Y. (1982).

(2] Dobry, T.P., Despain, A.M., Patt, Y.~. Performance Studies of a Prolog Machine Architecture.
12th International Symposium of Computer Architecture (June 1985).

(3] Gabriel, R.P. Performance Evaluation of Lisp Systems. MIT Press, Cambridge, Mass. (1985).

(4] Gutierrez, C. Prolog Compared with Lisp. ACM Symposium on Lisp and Functional Program
ming (1982), 143-149.

(5] Hattori, F., Kushima, K., Wasano, T. A Comparison of Lisp, Prolog, and Ada Programming
Productivity in AI Area. Proc. 1985 Int. Conf. on Software Engineering, 285-291.

(6] Heygood, R. A Prolog Benchmark Suite for Aquarius. UC Berkeley Computer Science Division
report #89/503 (April 1989).

(7] McDermott, D. The Prolog Phenomenon. SIGART Newsletter 72 (July 1980), 15-20.

[8) O'Keefe, R.A. Prolog Com~ared with Lisp? SIGPLAN Notices 18,5 (May 1983), 45-56.

(9) Okuno, H.G. The Report of The Third Lisp Contest and The First Prolog Contest. ~T&T
Mushino Electrical Communication Laboratories (Sept. 13, 1985).

(10] Ponder, C., McGeer, P., Ng, A.P.C. Are Applicative Languages Inefficient? SIGPLAN Notices
29,6 (June 1988), 135-139.

(11) Ponder, C. Benchmark Semantics. SIGPLAN Notices 29,2 (Feb. 1988), 44-48.

[12) Tick, E. Memory Performance of Lisp and Prolog Progr~. Proc. Third Int. Conf. on LogJc
Programming (E. Shapiro, ed.), Springer-Verlag Lecture Notes in Computer Science (1986),
642-649.

[13] Ungar, D.M. The Design and Evaluation of a High-Performance Smalltalk System. UC Berkeley
Computer Science Division report #86/287 (Fall 1986).

[14) Warren, D.H.D., Pereira, L.M. Prolog - the Language and its Implementation Compared with
Lisp. SIGPLAN Not~ees 12,8 (Aug. 1977), 109-115.

[15] Warren, D.H.D. Implementing Prolog - Compiling Predicate Logic Programs (Vols. 1 fj 2).
Dept. of Artificial Intelligence Research Reports 39 & 40, Edinburgh University (1977).

[16] Warren, D.H.D. An Abstract Prolog InstructJon Set. Technical Note 309, AI Center, SRI Inter
national (1983).

~li] Wilk, P.F. Prolog Benchmarking. Dept. of Artificial Intelligence, Edinburgh University (Dec.
1983).

12

Appendix: the Benchmarks

l.a. Prolog Nreverse

%%
%
%
%%

Prolog version ot "nreverse list30" benchmark,
trom Warren's thesis.

%%
%
%

%%

list30([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30-

nreverse([XILO] ,L)
nreverse(0, D).

nreverse(LO,Ll), concatenate(Ll,[X],L).

concatenate([XIL1],L2, [XIL3]) ·- concatenate(L1,L2,L3).
concatenate(D ,L,L).

main :- statistics,
list30(L30),
nreverse(L30, X),
statistics,
vrite(X).

13

1. b. Lisp Nreverse

Warren benchmark "nreverse 1ist30", :for comparison
o:f various LISPs and PROLOGs.

(de:fun nreverse (1)
(cond ((null 1) nil)

(t (concatenate (nreverse (cdr 1))
(cons (car 1) nil)))))

(de:fun concatenate (11 12)
(cond ((null 11) 12)

(t (cons (car 11) (concatenate (cdr 11) 12)))))

(de:fun test ()
(prog (H I J K list30)

(setq 1ist30 '(1 2 3 4 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30))

(do ((I 0 (1+ I)))
((> I 100))
(nreverse 1ist30))))

(de:fun doit ()
(prog (X Y)

(setq I (ptime))
(test)
(setq Y (ptime))
(return (cons (- (car Y) (car X))

(- (cdr Y) (cdr I))))))

14

2. Prolog Tak

%1• Copyright Herve' Touati, Aquarius Project, UC Berkeley •/

main :- statistics(runtille·,_),
tak(1S, 12, e, I).
statistics(runtille,[_,T]),
·vrite(T), nl,
vrite(I), nl.

tak(X,Y,Z,A) :-
X =< y • ! •
Z = A.

tak(X,Y,Z,A) :-
I1 is I- 1,
tak(l1,Y,Z,U),
Y1 is Y - 1,
tak(Y1,Z,l,A2),
Z1 is Z - 1,
tak(Z1,l,Y,A3),
tak(Al,A2,A3,A).

..

15

3. Prolog Boyer

%!• Copyright Herve' Touati, Aquarius Project, UC Berkeley •/

%-~--
% Benchmark Program - Boyer
% Lisp vs. Prolog Study
%
% Cop,yright by Evan Tick
% Date: lovember 12 1985
%
%--
main :- statistics,

vtt(I),tautology(I),
statistics.

vtt(implies(and(implies(I,Y),
and(impliea(Y,Z),

and(implies(Z,U),
implies(U,W)))),

implies(I,W))) :-
I a t(plua(plus(a,b),plua(c,zero))),
Y a t(times(times(a,b),plua(c,d))),
Z • t(rever .. (append(append(a, b), 0))),
U a equal(plua(a,b),ditterence(x,y)),
W • leasp(remainder(a,b),member(a,length(b))).

tautology(Wtt) :
vrite('revriting ... '),nl,
revrite(Wtt,levWtt),
vrite('proving ... '),nl,
tautology(levWU, 0, 0).

tautology(Wtt,Tlist,Flist) :
(truep(Wtt,Tlist) -> true
;talsep(Wtf,Flist) -> tail
;Wtt = it(It,Then,Else) ->

(truep(It,Tlist) -> tautology(Then,Tlist,Flist)
;talsep(It,Flist) -> tautology(Else,Tlist,Flist)
;tautology(Then,CitiTlist] ,Flist), %both must hold
tautology(Else,Tlist, CitiFlist])

)

) ' I ,

revrite(Atom,Atom)
atomicCAtom), 1 •

revrite(Old,lev) :-

16

tunctor(Old,F,I),
tunctor(Mid,F,I),
rewrite_args(N,Old,Mid),
(equal(Mid,Next),

rewrite(lext,New)
lew=Mid

) • ! .

rewrite_args(O,_,_) :- ! .

rewrite_args(B,Old,Mid) :
arg(B,Old,OldArg),
arg(B,Mid,MidArg),
rewrite(OldArg,MidArg),
11 is 11-1,
rewrite_args(l1,0ld,Mid).

truep(t,_) :- ! .

% should be ->, but is compiler smart enough?
% to generate cut tor ->?

truep(Wtt,Tlist) ·- member(Wtt,Tlist).

talsep(t,_) :- ! .
talsep(Wtt,Flist) member(Wtt,Flist).

member(X, (XI_]) :- ! .

member(X,(_IT]) :- member(X,T).

equal(and(P,Q),
it(P,it(Q,t,t),t)
) .

equal(append(append(X,Y),Z),
append(X,append(Y,Z))
) .

equal(assignment(X,append(A,B)),
it(assignedp(X,A),

assignment(X,A),
assign.m.ent(X,B))

) .
equal(assume_talse(Var,Alist),

cons(cons(Var,t),Alist)
) .

equal(assume_true(Var,Alist),
cons(cons(Var,t),Alist)
) .

equal(boolean(X),
or(equal(X,t),equal(X,f))
) .

equal(car(gopher(X)),
it(listp(X),
car(Hatten(X)),
zero)
) .

% 106 rules

17

equal(compile(Form),
reverse(codegen(optimize(Form),[]))
) .

equal(count_list(Z,sort_lp(X,Y)),
plus(count_list(Z,X),

count_list(Z,Y))
) .

equal(countps_(L,Pred),
countps_loop(L,Pred,zero)
) .

equal(difterence(A,B),
c
) :- ditterence(A,B,C).

equal(divides(X,Y),
zerop(remainder(Y,X))
) .

equal(dsort(X),
aort2(1)
) .

equal(eqp(l,Y),
equal(tix(X),ti%(Y))
) .

equal(equal(A,B),
c
) :- eq(.l,B,C).

equal(evenl(l),
it(zerop(l),t,odd(decr(I)))
) .

equal(exec(append(X,Y),Pds,Envrn),
exec(Y,exec(X,Pds,Envrn),Envrn)
) .

equal(up(A,B),
c
) :- erp(.l,B,C).

equal(tact_(I),
tact_loop(I,l)
) .

equal(talsity(I),
talsityl (normalize (X) , 0)
) .

equal(tix(X),
it(numberp(X),X,zero)
) .

equal(tlatten(cdr(gopher(X))),
it(listp(X),

cdr(tlatten(X)),
cons (zero, 0))

) .
equal(gcd(A,B),

c
) :- gcd(A,B,C).

18

equal(get(J,set(I,Val,Mem)),
it(eqp(J,I),Val,get(J,Mem))
) .

equal(greatereqp(X,Y),
not(lessp(X,Y))
) .

equal(greatereqpr(X,Y),
not(lessp(X,Y))
) .

equal(greaterp(X, Y),
lessp(Y ,X)
) .

equal(it(it(A,B,C),O,E),
it(A,it(B,O,E),it(C,O,E))
) .

equal(itt(X,Y),
and(implies(X,Y),implies(Y,X))
) .

equal(implies(P,Q),
it(P,it(Q,t,t),t)
) .

equal(last(append(A,B)),
it(listp(B),

last(B),
it(listp(A),

eons(ear(last(A))),
B))

) .
equal(length(A),

B
) :- mylength(A,B).

equal(lesseqp(X,Y),
not (lessp(Y, X))
) .

equal(lessp(A,B),
c
) :- lessp(A,B,C).

equal(listp(gopher(X)),
listp(X)
) .

equal(me_tlatten(X,Y),
append(tlatten(X),Y)
) .

equal(meaning(A,B),
c
) :- meaning(A,B,C).

equal(member(A,B),
c
) :- mymember(A,B,C).

equal(not(P),
it(P,t,t)

19

) .
equal(nth(A,B),

c
) :- nth(A,B,C).

equal(numberp(greatest_tactor(X,Y)),
not(and(or(zerop(Y),equal(Y,l)),

not(numberp(I))))
) .

equal(or(P,Q),
it(P,t,it(Q,t,t),t)
) .

equal(plus(A,B),
c
) :- plus(A,B,C).

equal(pover_eval(A,B),
c
) :- pover_eval(A,B,C).

equal(prime(I),
and(not(zerop(I)),

and(not(equal(X,addl(zero))),
primel(I,decr(I))))

) .
equal(prime_list(append(I,Y)),

and(prime_list(I),prime_list(Y))
) .

equal(quotient(A,B),
c
) :- quotient(A,B,C).

equal(remainder(A,B),
c
) :- remainder(A,B,C).

equal(reverse_(I),
reverse_loop(I, 0)
) .

equal(reverse(append(A,B)),
append(reverse(B),reverse(A))
) .

equal(reverse_loop(A,B),
c
) :- reverse_loop(A,B,C).

equal(sametringe(X, Y),
equal(tlatten(X),tlatten(Y))
) .

equal(sigma(zero,I),
quotient(times(I,addl(I)),2)
) .

equal(sort2(delete(X,L)),
delete(X,sort2(L))
) .

equal(tautology_checker(X),
tautologyp(normalize(X), 0)

20

) .
equal(times(A,B),

c
) :-times(A,B,C).

equal(times_list(append(X,Y)),
times(times_list(X),times_list(Y))
) .

equal(value(normalize(X),A),
value(X,A)
) .

equal(zerop(X),
or(equal(X,zero),not(numberp(X)))
) .

ditterence(X, X, zero) :- ! .
ditterence(plus(X,Y), X, tix(Y)) :- ! .

ditterence(plus(Y,X), X, tix(Y)) :- !.
ditterence(plus(X,Y), plus(X,Z), ditterence(Y,Z)) ·- ! .
ditterence(plus(B,plus(A,C))·, A, plus(B,C)) :- ! .

ditterence(addl(plus(Y,Z)), Z, addl(Y)) ! .

ditterence(addl(addlCX)), 2, tix(I)).

eq(plus(A,B), zero, and(zerop(A),zerop(B))) ·- ! .

eq(plus(A,B), plus(A,C), equal(tix(B),tix(C))) ·- !.
eq(zero, ditterence(I,Y),not(lessp(Y,X))) :- ! .
eq(X, ditterence(X,Y),and(numberp(I),

and(or(equal(X,zero),
zerop(Y))))) :- ! .

eq(times(I,Y), zero, or(zerop(X),zerop(Y))) :- !.
eq(append(A,B), append(A,C), equal(B,C)) :- !.

eq(tlatten(X), cons(Y,O). and(nlistp(I),equal(X,Y))) :- !.
eq(greatest_tactor(X,Y),zero, and(or(zerop(Y),equal(Y,l)),

equal(I,zero))) ·- !.

eq(greatest_tactor(X,_),l, equal(I,l)) :- !.
eq(Z, times(W,Z), and(numberp(Z),

or(equal(Z,zero),
equal(W,l)))) :- ! .

eq(X, times(X,Y), or(equal(X,zero),
and(numberp(X),equal(Y,1)))) ! .

eq(times(A,B), 1, and(not(equal(A,zero)),
and(not(equal(B,zero)),

) :- ! .

and(numberp(A),
and(numberp(B),

and(equal(decr(A),zero),
equal(decr(B),zero))))))

eq(ditterence(X,Y), ditterence(Z,Y),if(lessp(X,Y),
not(lessp(Y,Z)),
it(lessp(Z,Y),

not(lessp(Y,X)),
equal(tix(X) ,tix(Z))))) :- 1

21

eq(lessp(I,Y), Z, it(leasp(X,Y),
equal(t,Z),
equal(t ,Z))).

exp(I, plus(J,K), times(exp(I,J),exp(I,K))) ·- !.
exp(I, times(J,K), exp(exp(I,J),K)).

gcd(X, Y, gcd(Y,X)) :- !.

gcd(times(X,Z), times(Y,Z), times(Z,gcd(X,Y))).

mylength(reverse(X),length(X)).
mylength(cons(_,cons(_,cons(_,cons(_,cons(_,cons(_,X7)))))),

,plus(6,length(X7))).

lessp(remainder(_,Y), Y, not(zerop(Y))) ·- !.
lessp(quotient(I,J), I, and(not(zerop(I)),

or(zerop(J),
not(equal(J,l))))) ·- !.

lessp(remainder(X,Y), I, and(not(zerop(Y)),
and(not(zerop(I)),

not(lessp(I,Y))))) ·- ! .

lessp(plus(X,Y), plus(I,Z), lesap(Y,Z)) :- !.
lessp(times(I,Z), times(Y,Z), and(not(zerop(Z)),

lessp(I,Y))) :- ! .

lessp(Y, plus(I,Y), not(zerop(I))) :- !.
lessp(length(delete(X,L)), length(L), member(I,L)).

meaning(plus_tree(append(X,Y)),A,
plus(meaniag(plus_tree(I),A),

meaning(plus_tree(Y),A))
) ·- I . . .

meaning(plus_tree(plus_tringe(I)),A,
tix(meaning(I,A))
) •- I . . .

meaning(plus_tree(delete(X,Y)),A,
it(member(X,Y),

ditterence(meaning(plus_tree(Y),A),
, meaning(X,A)),

meaning(plus_tree(Y),A))).

mymember(X,append(A,B),or(member(X,A),member(X,B))) :- ! .

mymember(X,reverse(Y),member(X,Y)) :- ! .

mymember(A,intersect(B,C),and(member(A,B),member(A,C))).

nth(zero,_,zero).
nth(O ,I,it(zerop(I), [],zero)).
nth(append(A,B),I,append(nth(A,I),nth(B,di!!erence(I,length(A))))).

plus(plus(X,Y),Z,
plus(X,plus(Y,Z))

) :- I

22

plus(remainder(X,Y),
times(Y,quotient(X,Y)),
:fix(X)

) •- I . . .
plus(X,addl(Y),

i:f(numberp(Y),
addl(plus(X,Y)),
addl (X))
) .

pover_eval(big_plusl(L,I,Base),Base,
plus(pover_eval(L,Base),I)

) ·- I . . .
pover_eval(pover_rep(I,Base),Base,

:fix(I)
) ·- I . . .

pover_eval(big_plus(X,Y,I,Base),Base,
plus(I,plus(pover_eval(X,Base),

pover_eval(Y,Base)))
) :- ! .

pover_eval(big_plus(pover_rep(I,Base),
pover_rep(J,Base),
zero,

Base,
plus(I,J)

) .

Base),

quotient(plus(X,plus(X,Y)),2,plus(l,quotient(Y,2))).
quotient(times(Y,X),Y,i:f(zerop(Y),zero,:fix(X))).

remainder(_,
remainder(X,
remainder(times(_,Z),
remainder(times(Y,_),

reverse_loop(l,Y,
reverse_loop(X, D ,

l,zero) ! .

l,zero) ! .

Z,zero) ! .

Y,zero).

append(reverse(X),Y)
reverse(X)

) :- ! .

) .

times(X, plus(Y,Z), plus(times(X,Y),times(X,Z)) :- 1

times(times(X,Y),Z,
times (X,
times(X,

di:f:ference(C,W),
addl(Y),

times(X,times(Y,Z)) :-!

di:f:ference(times(C,X),times(W,X)) :- I

i:f(numberp(Y),
plus(X,times(X,Y)),
:fix(X))).

23

4. Prolog Browse

%1• Copyright Herve' Touati, Aquarius Project, UC Berkeley •I

%1• obtained trom Tep Dobry •I
%1• moditied by Herve' Touati 01115187 •I

main :- statistics,
init(100,10,4,

[[a,a,a,b,b,b,b,a,a,a,a,a,b,b,a,a,a],
[a, a, b, b, b, b, a, a, [a, a] , [b, b]] ,
(a, a, a, b, [b, a] , b, a, b, a]

],
Symbols),

randomize(Symbols,RSymbols,21),!,
investigate(RSymbols,

[[star(S!),B,star(SB),B,a,star(S!),a,star(SB),star(SA)],
[star(S!),star(SB),star(SB),star(S!),[star(S!)],[star(SB)]],
(_,_,star(_),(b,a],star(_),_,_]

]) .
statistics.

init(I,M,Ipats,Ipats,Result) ·- init(I,M,M,Ipats,Ipats,Result).

init(O,_,_,_,_,_) :- ! .
init(I,I,M,Ipats,Ipats,[SymbiRest]) ·

till(I, 0 ,L),
get_pats(lpats,Ipats,Ppats),
J is M - I,
till(J,(pattern(Ppats)IL],Symb),
11 is I - 1,
(I== 0 -> I1 isM; I1 is I- 1),
init(I1,I1,M,Ipats,Ipats,Rest).

till(O,L,L) :- ! .
till(I,L,[dWIIIIly(0)1Rest]) ·- 11 is I- 1, till(I1,L,Rest).

randomize (0 , 0 , _) : - ! .
randomize(In,[XIOut] ,Rand) ·

length(In,Lin),
Rand1 is (Rand • 17) mod 251,
I is Rand1 mod Lin,
split(N,In,X,Inl),
randomize(In1,0ut,Rand1).

split(O,[XIXs].X,Xs) :- 1.

split(I,[XIXs] ,RemovedElt,[XIYs])

24

..

11 is I- 1,
split(Nl,Xs,RemovedElt,Ys).

investigate(0 ,_).
investigate([UIUnits] ,Patterns) ·

property(U,pattern,Data),
p_investigate(Data,Patterns),
investigate(Units,Patterns).

get_pats(lpats,Ipats,Result) get_pats(lpats,Ipats,Result,Ipats).

get_pats(O,_, 0 ,_) :- ! .

get_pats(I,[XIXs] ,[XIYs] ,Ipats) ·-
11 is I - 1,
get_pats(I1,Xs,Ys,Ipats).

get_pats(I,O,Ys,Ipats) :-
get_pats(I,Ipats,Ys,Ipats).

property(O ,_,_) :-tail. I• don't really need this •/
property([PropiRProps] ,P,Val) ·-

tunctor(Prop,P,_),!,
arg(1,Prop, Val).

property((_IRProps] ,P,Val) :-
property(RProps,P,Val).

p_investigate(0 , _).
p_investigate([DIData] ,Patterns) ·

p_match(Patterns,D),
p_investigate(Data,Patterns).

p_match(O ,_).
p_match([PIPatterns] ,D)

(match(D,P), tail; true),
p_match(Patterns, D).

match(0, 0) :- ! .
match([XIPRest] ,[YISRest]) ·

var(Y),! ,X= Y,
match(PRest,SRest).

match(List,[YIRest]) :
nonvar(Y),Y = star(X), 1,

concat(X,SRest,List),
match(SRest,Rest).

match([XIPRest], [YISRest]) :-
(atom(X) ->X= Y; match(X,Y)),
match(PRest,SRest).

concat(0 ,L,L).
concat([XIL1],L2,[XIL3]) concat(L1,L2,L3).

25

5. Prolog Frpoly

%%
%
% "FRPOLY" symbolic polynomial powering algorithm.
% Converted from Lisp (Gabriel Suite) by Rick McGeer.
%
% To run, say
% ?-setup.
% ?-bench(S).
% ?-bench(lO).
% ?-bench(15).
%
%%

main statistics(runtime,_),
setup,
statistics(runtime,[_,A]),
bench(S),
statistics(runtime,[_,B]),
bench(lO),
statistics(runtime,[_,C]),
bench(15),
statistics(runtime, [_,D)),
vrite(.l), nl,
vrite(B), nl,
vrite(C), nl,
vrite(D), nl.

% Polynomial addition

poly_add(poly(Var, Terms1), poly(Var, Terms2), poly(Var, Terms3)) ·-
I
• I

add_terms(Terms1, Terms2, Terms3).

poly_add(poly(Varl, Termsl), poly(Var2, Terms2), poly(Varl, Terms3))
Var2 «!> Var1,
I ..
add_To_Zero_Term(Termsl, poly(Var2, Terms2), Terms3).

poly_add(poly(Varl, Termsl), poly(Var2, Terms2), poly(Var2, Terms3))
Varl ~> Var2,

add_To_Zero_Term(Terms2, poly(Varl, Termsl), Terms3).

26

poly_add(poly(Var1, Terms1), I, poly(Var1, Terms3)) ·-
I ..
add_To_Zero_Term(Terms1, I, Terms3).

poly_add(I, poly(Var2, Terms2), poly(Var2, Terms3))
! •
add_To_Zero_Term(Terms2, I, Terms3).

% Straight addition ot numbers

poly_add(l, M, T)
T is I + M.

% adding Terms

add_terms(0 ,I,I) ·- ! .

add_terms(I,O,I) ·- !.

..

add_terms([term(Exp,C1)1Terms1] ,[term(Exp,C2)1Terms2],[term(Exp,C)ITerms])
I ..
poly_add(C1, C2, C),
add_terms(Terms1, Terms2, Terms).

add_terms([term(E1,C1)1Terms1] ,[term(E2,C2)1Terms2],[term(El,C1)1Terms]) ·
E1 < E2,
! •
add_terms(Terms1;[term(E2,C2)1Terms2],Terms).

add_terms (Terms 1, [term(E2, C2) I Terms2] , [term(E2, C2) I Terms]) ·
add_terms(Terms1, Terms2, Terms).

add_To_Zero_Term([term(O,C1)1Terms],C2,[term(O,C)ITerms])
I ..
poly_add(C1, C2, C).

add_To_Zero_Term(Terms,C,[term(O,C)ITerms]).

% Polynomial Multiplication

poly_mult(poly(Var, Termsl), poly(Var, Terms2), poly(Var, Terms3))
torm_poly_product(Terms1, Terms2, Terms3).

poly_mult.(poly(Varl, Termsl), poly(Var2, Terms2), poly(Varl, Terms3))
Var2 ID> Varl,

multiply_through(Termsl, poly(Var2, Terms2), Terms3).

poly_mult(Polyl, poly(Var2, Terms2), poly(Var2, Terms3))
I ..

27

multiply_through(Terms2, Poly1, Terms3).

poly_mult(poly(Var2, Terms2), Poly1, poly(Var2, Terms3)) ·-
I ..
multiply_through(Terms2, Poly1, Terms3).

poly_mult(C1, C2, C) :
C is C1 • C2.

multiply_through(O, _, 0) :- !.

multiply_through([term(I,T1)1Terms), Poly, £term(l,lewT1)11ewTerms)) ·
poly_mult(T1, Poly, lewT1),
multiply_through(Terms, Poly, lewTerms).

torm_poly _product (0 , _, 0) ! .

t orm_poly _product(_, 0 , 0) ·- ! .

torm_poly_product([TliTerms), Terms2, Terms3)
torm_single_product(Terms2, Tl, Ta),
torm_poly_product(Terms, Terms2, Tb),
add_terms(Ta, Tb, Terms3).

torm_single_product(O,_,O) :- !.

torm_single_product([term(Exp1,Cl)ITerma), term(Exp2,C2), [term(Exp,C)IProducts))
Exp is Exp1 + Exp2,
poly_mult(C1, C2, C),
torm_single_product(Terms, term(Exp2,C2), Products).

% Polynomial Exponentiation

poly_expt(O, 1) :- ! .

poly_expt(l, P, Result) :
evenP(I),
I ..
M is I// 2,
poly_expt(M, P, lextRes),
poly_mult(lextRes, lextRes, Result).

poly_expt(l, P, Result) :
M is I - 1,
poly_expt(M, P, NextRes),
poly_mult(P, NextRes, Result).

%poly_expt(l, P, Result) :-
% poly_expt(N, P, 1, Result).

28

%poly_erpt(O, _, Result, Result) :- ! .

%
%poly_erpt(N, P, ResSoFar, Result) :-
% evenP(N),
%
% M is I // 2,
% poly_mult(ResSoFar, ResSoFar, lextRes),
% poly_expt(M, P, lextRes, Result).
%
%poly_expt(l, P, ResSoFar, Result) :
% M is I - 1,
% poly_mult(P, ResSoFar, lextRes),
% poly_expt(M, P, lextRes, Result).
%

setup
poly_add(poly(y,(term(O,l),term(1,1)]),poly(z,(term(1,1)]),Tmp),
poly_add(poly(x,(term(l,l)]),Tmp,R),
assert(test_ease(R)).

evenP(X) ·-
1 is X // 2,
X is I • 2.

print_poly(poly(Var, Terms))
I ..

print_Terms(Terms, Var).

print_poly(X) ·
nite(X).

print_Terms(O,_) :- !.

print_Terms((term(_, O)ITerms] ,Var)
I ..
print_Terms(Terms, Var).

print_Terms((Term] ,Var) :-
I ..
print_Term(Term, Var).

print_Terms((Terml!erms] ,Var)
print_Term(Term, Var),
llri te (1 + 1

) ,

prlnt_Terms(Terms, Var).

print_Term(term(O, P), _) :-
! •

29

print_poly(P).

print_Term(term(1, C), Var) ·-
I ..
print_Coett(C),
vrite(Var).

print_Term(term(Exp,C), Var) ·
print_Coett (C),
vrite(Var),
vrite(•-•),
vrite(Exp).

print_Coett(1) :- 1

print_Coett(l)
atomic:(!),

vrl.te(l),
vrite('•').

print_Coett(P) :-
I ..
vrite('('),
print_poly(P),
vrite(')'),
write('•').

benc:h(l) :
test_c:ase(X),
poly_expt(l, X, Y).

• u

...

30

...

6.a. Prolog Prover

%%
%
%

Prolog theorem prover to be compared against Lisp
(R . .A.. O'Keete - "Prolog Compared with Lisp?")

%
% (trom Sigplan lotices, vol 18 #5, May 1983)
%%

%%%%%%%%
%%%%%%%%
%%%%%%%%

Also to be run with suppressed output, tor
computation time only

%%%%%%%%

main:- statistics(runtime,_),
timed(10 ,10),
statistics(runtime,[_,A]),
timed(10,9),
statistics(runtime,[_,B]),
timed(10,8),
statistics(runtime,[_,C]),
timed(10,7),
statistics(runtime,[_,D]),
timed(10,6),
statistics(runtime,[_,E]),
timed(10,S),

\statistics(runtime, [_,F]),
timed(10 ,4),
statistics(runtime,[_,G]),
timed(10,3),
statistics(runtime,[_,H]),
timed(10,2),
statistics(runtime,[_,I]),
timed(10,1),
statistics(runtime,[_,J]),

1 write(A), nl,
write(B), nl,
write(C), nl,
write(D), nl,
write(E), nl,
write(F), nl,
write(G), nl,
write(H), nl,
write(!), nl,
wn.te(J), nl.

public
go/1, % quick test using stored problems

31

%%%%%%%%
%%%%%%%%
%%%%%%%%
%%%%%%%%

implies/2,
timed/2.

% the prover proper
% for getting CPU times

mode
add_conjunction(+,+,+),
expand(+,+,-),
extend(+,+,+,-,+,-),
go(+),
implies(+,+),
includes(+,+),
opposite(+,-),
problem(+,-,-),
refute(+),
try(+),
timed(+,+).

op(950, x1.y, #).

op(SSO, x1.y, t).

op(SOO, 1.x, +).
op(SOO, 1.x, -).

% disjunction
Yo conjunction
% assertion
% denial

illlplies(Premise, Conclusion) :-
vrite('Trying to prove that '), vrite(Premise),
vrite(' implies '), vrite(Conclusion), nl,
opposite(Conclusion, Denial), !,
add_conjunction(Premise, Denial, h (0 , 0 , 0 , 0)).

opposite(FO t GO, Fl # Gl) :-
', opposite(FO, Fl), ! ,

opposite(GO, Gl).
opposite(Fl # Gl, FO t GO) :

opposite(Fl, FO), !,
opposite(Gl, GO).

opposite(+Atom, -Atom).
opposite(-Atom, +Atom).

add_conjunction(F, G, Set):-
vrite('Expanding conjunction '), vrite(F t G),
vrite(' by Rule 1'), nl,
expand(F, Set, Mid),
expand(G, Mid, lev), ! ,
retute(lev).

expand(Formula, refuted, refuted).
expand(F t G, fs(D,C,P,N), refuted) :- includes(D, F t G), I

expand(F t G, fs(D,C,P,N), fs(D,C,P,N)) :- includes(C, F t G), 1

expand(F t G, fs(D,C,P,N), Nell) :-
expand(F, fs(D, [FtGIC] ,P,N), Mid), 1

expand(G, Mid, Nell).
expand(F # G, fs(D,C,P,N), Set) :

opposite(F # G, Conj), I

32

extend(Conj, D, C, Dl, fs(Dl,C,P,I), Set).
expand(+Atom, fs(D,C,P,I), Set) :- !,

extend(Atom, P, I, Pl, fs(D,C,Pl,l), Set).
expand(-Atom, fs(D,C,P,I), Set) :- !,

extend(Atom, I, P, 11, fs(D,C,P,Bl), Set).

includes(EHeadiTail], Head) ·- ! .

includes([HeadiTail], This) includes(Tail, This).

extend(Exp, Pos, leg, lev, Set, refuted) :- includes(leg, Exp), ! .

extend(Exp, Pos, leg, Pos, Set, Set) :- includes(Pos, Exp), ! .

extend(Exp, Pos, leg, [ExpiPos], Set, Set) . ..
refute(refuted) :- vrite('Contradiction spotted (Rule 3).'), nl.
refute(ts([Fl t GliD], C, P, I))·:-

opposite(Fl, FO),
opposite(Gl, GO),
Set= fs(D, C, P, 1),
vrite('Case analysis on '), vrite(FO #GO),
vrite(' using Rule 2'), nl,
add_conjunction(FO, Gl, Set),
add_conjunction(FO, GO, Set),
add_conjunction(Fl, GO, Set).

refute(Set) :-

problem(

problem(

problem(

problem(

problem(

problem(

problem(

problem(

problem(

problem(

try(!)

vrite('Can''t refute '), vrite(Set), nl,
fail.

1, -a, +a).

2, +a, -at -a).

3, -a, +to_be # -to_be).

4, -a t -a, -a).

51 -a, +b # -a).

6, -a t -b, -b t -a).

7, -a, -b # (+b t -a)).

8, -a # (-b #+c), -b # (-a # +c)).

9, -a # +b, (+b t -c) # (-a# +c)).

10, (-a # +c) t (-b # +c), (-a t -b)

problem(N, P, C), 1

implies(P, C).

33

+c).

timed(O, _) ·- !.
timed(K, li) ·- (try(li); true), J is K-1, !, timed(J,H) .

...

34

6. b. Lisp Prover

..

I I I I I I I I

........
I I I I I I I I

I I I I I I I I

Lisp theorem prover to be compared against Prolog
(R.A. O'Keete - "Prolog Compared with Lisp?")

(from Sigplan lotices, vol 18 #5, May 1983)

<FranzLisp Version>
<corrected>

Also to be run with suppressed output, for
computation time only

(defmacro time (z)
'(prog (X Y)

(setq X (ptime))
,z
(setq Y (ptime))
(princ (cons (- (car Y) (car I))

(- (cadr Y) (cadr I))))
(terpri)))

(declare
(special Cases D C P I Refuted))

(defun implies (Premise Conclusion)

I I I I I I J I

I I I I I I I I

(princ (list "Trying to prove that" Premise "implies" Conclusion))
(terpri)
(add-conjunction Premise (opposite Conclusion) nil nil nil nil)

(defun opposite (F)
(prog (0)

(setq 0 (car F))
(return (cond ((eq 0

(cons

((eq 0
(cons

'\1:)

'\# (cons

'\#)

'\1: (cons

((eq 0 '+)

(opposite
(opposite

(opposite
(opposite

(cons '- (cdr F)))

((eq 0 '-)
(cons '+ (cdr F)))

35

(cadr F))

(cddr F)))))

(cadr F))

(cddr F)))))

))
))

(detun add-conjunction (F G D C P !)
(prog (Retuted)

))

(princ (list "Expanding conjunction" (cons '\1: (cons F G))
"by Rule 1")) (terpri)

(setq Retuted nil)
(expand F)
(expand G)
(cond (Retuted

)

(princ "Contradiction spotted")(terpri)
(return t))

((not (atom D))
(return (split (cadar D) (cddar D) (cdr D))))

(t

(princ (list "Can't retute" D C P I))(terpri)
(return nil))

(detun split (F1 G1 D)
(prog (F G)

))

(princ (list "Case analysis on" (cons '\# (cons F1 G1))
"(Rule 2)"))(terpri)

(setq F (opposite F1))
(setq G (opposite G1))
(return (and (add-conjunction F G1 D C P I)

(add-conjunction F G D c·p I)
(add-conjunction F1 G D C P I)

))

(detun expand (F)
(prog (0)

))

(setq 0 (car F))
(cond ((eq 0 '\1:)

(cond ((member F D) (setq Retuted t))
((member F C) nil)
(t (setq C (cons F C))

(expand (cadr F))
(expand (cddr F))))

((eq 0 '\#) (setq D (extend (opposite F) D C)))
((eq 0 '+) (setq ? (extend (cdr F) ? I)))
((eq 0 '-) (setq I (extend (cdr F) N P)))

(detun extend (F A B)
(cond ((member F B) (setq Retuted t) A)

((member F A) A)

36

..

(t (cons F A))

(detun try (M)
(implies (vref Cases (• 2 M))

(vref Cases (1+ (• 2 M)))))

(detun setup ()
(setq Cases (vector

'(- a) '(+ a)
'(+ b) '(\& (- b) . (- . b))

'(- nothing) '{\# (+ to-be) . (- . to-be))

)))

(defun timed (K M)
(prog ()

L (try M)

'(\& (- a)

'(- b)
'(\& (- a)

'(- . b)

'(\# (- a)

'(\# (- a)

'(\& (\# (- .

(- a)) '(- a)
'(\# (+ a) (- b))

(- . b)) '(\& (- b) (- a))

'(\# (- . a) . (\& (+
(\# (- . b) . (+ . c)))

'(\# (- . b) . (\# (
(+ . b))
'(\# (\t (+ . b) . (

(\# (- . a) . (+
a) . (+ . c)) . (\# (
'(\# (\& (- . a) . (-

a) (- b)))

a) (+ c)))

c)) .
c)))

b) . (+ . c)))

b)) . (+ . c))

(cond ((greaterp (setq K (sub1 K)) 0) (go L)))
))

(detun doit ()
(setup)
(time (timed 10 9))

(time (timed 10 8))

(time (timed 10 7))

(time (timed 10 6))

(time (timed 10 5))

(time (timed 10 4))

(time (timed 10 3))

(time (timed 10 2))

(time (timed 10 1))

(time (tlmed 10 0)))

37

7. Prolog Puzzle

I• Copyright Herve' Touati, Aquarius Project, UC Berkeley •I

main:- statistics(runtime,_),
make_board(Board),
initialize(Board, Pieces),
statistics(runtime,(_,A]),
play(Board, Pieces, Board),
statistics(runtime,(_,B]),
vrite(A), nl,
write(B), nl.

initialize((Spot I_] , ((b, c, d, e, t ,g,h, i ,j ,k ,l,m], (n,o ,p], (q], (r]])
aet(O,O),
p1(a,Spot).

play(0 ,_,Board) :
access(O,I),
vrite('Success in '),
vrite(l),
vrite(' trials.'), nl.

play((s(V,_,_,_)IRest] ,Pieces,Board) ·
nonvar(V), ! ,

play(Rest,Pieces,Board).
play((SpotiRest] ,Pieces,Board) :

till(Spot,Pieces,lewPieces),
incr,
play(Rest,levPieces,Board).

incr ·-
access(O, Count),
!Count is Count + 1,

% vrite(Count), nl,
aet(O, !Count).

till(Spot, ([MarkiP1] IT], (P1IT]) :- p1(Mark,Spot).
till(Spot,(P1,(MarkiP2] IT),[P1,P2IT]) :- p2(Mark,Spot).
till(Spot,(P1,P2,(MarkiP3) IT] ,(P1,P2,P3IT]) =~ p3(Mark,Spot).
till(Spot,(P1,P2,P3,(MarkiP4] IT] ,(P1,P2,P3,P4IT)) p4(Mark,Spot).

% 4-2-1
p1(M,s(M,s(M,s(M,s(M,_,C13,_),C12,_),C11,_),s(M,C11,_,_),_))

C13 = s(M,_,_,_),
C12 = s(M,C13,_,_),
Cll = s(M,C12,_,_).

% 2-1-4
pl(M,s(M,s(M,_,_,C11),_,s(M,C11,_,s(M,C12,_,s(M,C13,_,_)))))

38

C13 = s(M,_,_,_),
C12 = s(M,_,_,C13),
Cll = s(M,_,_,C12).

%1-4-2
pl(H,s(M,_,s(M,_,s(M,_,s(M,_,_,Cl3),C12),C11),s(M,_,Cl1,_))) ·

C13 = s(M,_,_,_),
C12 = s(M,_,C13,_),.
C11 = s(M,_,C12,_).

% 2-4-1
pl(M,s(M,-s(M,_,C11,_),s(M,C11,s(M,C12,s(M,C13,_,_),_),_),_)) ·

C13 = s(M,_,_,_),
C12 = s(M,_,C13,_),
Cll = s(M,_,C12,_).

' % 4-1-2
pl(M,s(M,s(M,s(M,s(M,_,_,ct3),_,c12),_,ct1),_,s(M,C11,_,_))) ·

C13 = s(M,_,_,_),
C12 = a(M,C13,_,_),
C11 = s(M,C12,_,_).

%1-2-4
p1(M,s(M,_,s(M,_,_,C11),s(M,_,C11,s(M,_,C12,s(M,_,C13,_)))))

C13 = s(M,_,_,_),
C12 = s(M,_,_,C13),
C11 = s(M,_,_,C12).

p2(M,s(M,s(M,s(M,_,_,_),_,_),_,_)).
p2(M,s(M,_,s(M,_,s(M,_,_,_),_),_)).
p2(M,s(M,_,_,s(M,_,_,s(M,_,_,_)))).

p3(M,s(M,s(M,_,C,_),s(M,C,_,_),_)) ·
C = s(M,_,_,_).

p3(M,s(M,s(M,_,_,C),_,s(M,C,_,_))) ·
C = s(M,_,_,_).

p3(M,s(M,_,s(M,_,_,c),s(M,_,c,_))) ·
c = s(M,_,_,_).

p4(M,s(M,s(M,_,C110,C101),s(M,C110,_,s(M,C111,_,_)),s(M,C101,C011,_)))
C110 = s(M,_,_,C111),
C101 = s(M,_,C111,_),
C011 = s(M,Clll,_,_),
Clll = s(M,_,_,_).

make_board(LevelO) :
make_level(LevelO-Levell,Levell-_),
make_level(Level1-Level2,Level2-_),
make_level(Level2-Level3,Level3-_),
make_level(Level3-Level4,Level4-_),
make_level(Level4-[] ,X-[]),
X = [z,z,z,z,z, z,z,z,z,z, z,z,z,z,z, z,z,z,z,z, z,z,z,z,z].

make_level(C-Link,Z-L) :-
C = [COO,C10,C20,C30,C40,

39

C01,C11,C21,C31,C41,
C02,C12,C22,C32,C42,
C03,C13,C23,C33,C43,
C04,C14,C24,C34,C441Link],

z = (ZOO,Z10,Z20,Z30,Z40,
Z01,Z11,Z21,Z31,Z41,
Z02,Z12,Z22,Z32,Z42,
Z03,Z13,Z23,Z33,Z43,
Z04,Zl4,Z24,Z34,Z44IL],

coo = s(_,ClO,COl,ZOO),
ClO = s(_,C20,C11,Z10),
C20 = s(_,C30,C21,Z20),
C30 = s(_,C40,C31,Z30),
C40 = s(_, z,C41,Z40),

COl = s(_,C11,C02,Z01),
C11 = s(_,C21,C12,Z11),
C21 = s(_,C3l,C22,Z21),
C31 = s(_,C4l,C32,Z31),
C41 = s(_, z,C42,Z41),

C02 = s(_,Cl2,C03,Z02),
Cl2 = s(_,C22,Cl3,Zl2),
C22 = s(_,C32,C23,Z22),
C32 = s(_,C42,C33,Z32),
C42 = s(_, z,C43,Z42),

C03 = s(_,C13,C04,Z03),
C13 = s(_,C23,C14,Zl3),
C23 = s(_,C33,C24,Z23),
C33 = s(_,C43,C34,Z33),
C43 = s(_, z,C44,Z43),

C04 = s(_,C14, z,Z04),
C14 = s(_,C24, z,Z14),
C24 = s(_,C34, z,Z24),
C34 = s(_,C44, z,Z34),
C44 = s(_, z, z,Z44).

'l. set and access tor systems that don't support them

:- dynamic '$set'/2.
set(N, A) (retract('$set'(N, _)); true), assert('$set'(N, A)), I

access(N, A) :- '$set'(N,A), 1

40

